Bihar Mathematical Society

Talent Nature Programme (TNP) 2021 (Level II & III)

Full Marks:- 100

Answer all questions. All questions carry equal marks.

- 1. Let R be a principal ideal domain, and F be a free R-module with a basis consists of n elements. Then any sub-module K of F is also free with a basis consisting of m elements, such that $m \le n$.
- 2. Every Simple module is non-zero.
- 3. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be the series of non-negative terms. Let k > 0 be a constant and m

be a fixed positive integer, then if $a_n \le kb_n \forall n \ge m$ and $\sum_{n=1}^{\infty} b_n$ is convergent, then

$$\sum_{n=1}^{\infty} a_n \text{ is convergent.}$$

- 4. Let M be free R-module with basis $\{e_1, e_2, ..., e_n\}$. Then M $\simeq \mathbb{R}^n$.
- 5. Expand $4x^2 + 5x + 3$ in powers of (x-1) by using Taylor series.
- 6. Find the necessary and sufficient conditions for the function w = f(z) = u(x, y) + iv(x, y) to be analytic in given region R, are (i) ∂u/∂x, ∂v/∂y, ∂v/∂x, ∂v/∂y are continuous functions of x and y in the region R.
 (ii) ∂u/∂x = ∂v/∂y, ∂u/∂y = -∂v/∂x or u_x = v_y, u_y = v_x.(Cauchy-Riemann equations or C-R

equations)

7. Let $\phi: F^3 \to F^2$ be linear mapping given by $\phi(a, b, c) = (a + b + c, b + c)$. Find the matrix A of ϕ w.r.t. the standard bases of F^3 and F^2 . Also, find the matrix A' of ϕ w.r.t. the bases

 $\mathcal{B}' = \{(-1,0,2), (0,1,1), (3,-1,0)\}$ and $\mathcal{C}' = \{(-1,1), (1,0)\}$ of F^3 and F^2 , respectively. Verify that $A' = P^{-1}AQ$, where P and Q are the matrices of transformations.

- 8. Verify Gauss divergence theorem for $\overrightarrow{F} = (x^2 yz)\hat{i} (y^2 zx)\hat{j} + (z^2 xy)\hat{k}$ taken over the rectangular parallelopiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$.
- 9. Let f be an R-homomorphism of an R-sub-module M onto an R-module N. Then prove that $\frac{M}{Ker \ f} \cong N$.

10. Let A is an R-module of M and B is an R-module of N. Then prove that $\frac{M \times N}{A \times B} \cong \frac{M}{A} \times \frac{N}{B}$

Time: $2\frac{1}{2}$ Hours